This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Reactions of [(4-cyano-3-methylsulfanyl-1-phenyl)pyrazol-5-yl]iminomethylenyl Ethyl Ether with Compounds Containing Amino Group and the Bioactivity of Products

Wei-Qiang Chena; Gui-Yu Jina

^a Institute of Elemento-Organic Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China

Online publication date: 27 October 2010

To cite this Article Chen, Wei-Qiang and Jin, Gui-Yu(2002) 'Reactions of [(4-cyano-3-methylsulfanyl-1-phenyl)pyrazol-5-yl]iminomethylenyl Ethyl Ether with Compounds Containing Amino Group and the Bioactivity of Products', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 5, 1193 — 1200

To link to this Article: DOI: 10.1080/10426500211705 URL: http://dx.doi.org/10.1080/10426500211705

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur and Silicon, 2002, Vol. 177:1193–1200 Copyright © 2002 Taylor & Francis 1042-6507/02 \$12.00 + .00

DOI: 10.1080/10426500290092488

REACTIONS OF [(4-CYANO-3-METHYLSULFANYL-1-PHENYL)PYRAZOL-5-YL]IMINOMETHYLENYL ETHYL ETHER WITH COMPOUNDS CONTAINING AMINO GROUP AND THE BIOACTIVITY OF PRODUCTS

Wei-Qiang Chen and Gui-Yu Jin Institute of Elemento-Organic Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China

(Received February 7, 2001; accepted March 24, 2001)

The study on reaction of (1-phenyl-3-methylthio-4-cyanopyrazol-5-yl)iminomethylene ethyl ether with compounds containing amino group was discussed in order to understand its reactivity. Some structures of compounds were verified by x-ray crystallographic study. The results of the bioassay showed that some of these compounds showed good fungicidal activities.

Keywords: Fungicidal activities; iminomethylene ethyl ether; N-(substituted)pyrazolyl methanimidamine; pyrazolo[3,4-d]pyrimidine; x-ray crystallography

INTRODUCTION

N-(substituted)phenyl methanimidamines were widely used as agrochemicals, 1 such as chlorodimeform, 2 amitraz. 3 In recent years, heterocycles is a very important consideration in a study on new pharmaceuticals and agrochemicals. 4 Many new agrochemicals containing pyrazole ring have been synthesised, such as fripronil. 5 Our earlier efforts were made to synthesize N-(substituted)pyrazolyl methanimidamines, the bioassay results showed that this kind of compounds exhibited good fungicidal activities. 6 In order to understand the reactivities of the intermediate, N-[(4-cyano-3-methylsulfanyl-1-phenyl)pyrazol-5-yl]methylenyl ethyl ether (I), and to broaden

This work was supported by the National Natural Science Foundation of China (29832050).

Address correspondence to G.-Y. Jin, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300 071, PR China. E-mail: chwqiang@mail.zlnet.com

the usage of this kind of compounds, reactions of the intermediate N-pyrzolymethanimidate with compounds containing amino group were studied. And the biological activities of some products were investigated.

DISCUSSION AND RESULTS

Reaction of | with Compound Containing Active Amino Group

In the reaction of I with allylamine, a pyrazolo[3,4-d]pyrimidine product II_a was observed. At the beginning of this reaction, only product II_a produced. If the reaction time delays, II_a became less and the main product is II_a . But in the same condition when intermediate reacted with ammonium and ethyldiamine, only fused cyclic products were observed (Scheme 1).

SCHEME 1

Although the dimroth rearrangement occured in reaction of methanimidate with ammonia, hydrazine at room temperature (Scheme 2),^{7,8} we did not find any 4-(substituted)amino-pyrazolo[3,4-d]pyrimidine product, but 4-imino-pyrazolo[3,4-d]pyrimidines.

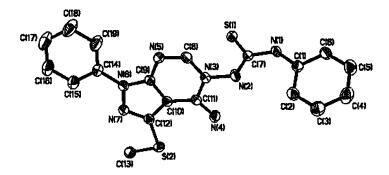
NHR
$$\frac{\text{excess RNH}_2}{\text{R.T.}}$$
 a R=H b R=NH₂ c R=CH₃NH

SCHEME 2

2. Reaction of I with Compound Containing Inactive Amino Group

When N-[(4-cyano-3-methylsulfanyl-1-phenyl)pyrazol-5-yl]methylenyl ethyl ether **I** reacted with (substituted)benzoyl hydrazine and phenyl thiosemicarbazide, the more reactive time was needed. The use of lewis acid, such as BF₃Et₂O, can shorten the reaction time. **I** reacted with phenyl thiosemicarbazide to give 4-imino-pyrazolo[3,4-d]pyrimidine product $\mathbf{II}_{\mathbf{I}}$, but with benzoyl hydrazine to give compounds $\mathbf{II}_{\mathbf{d} \sim \mathbf{g}}$.

At room temperature, I can not react with benzenylhydrazone and 2-nitroiminoimidazolidine without any catalyst. The poor yield of the products with the catalysis of BF_3Et_2O may due to most of intermediate I decomposing into pyrazol-5-ylamine and N-(pyrazol-5-yl)formamide. If NaH was added, the reaction occurred to give products in good yield, although pyrazol-5-ylamine was still observed.


SCHEME 3

3. Spectrum of the Products

The 1H NMR data indicated that the proton of group N=CH in methanimidamine $\mathbf{H_a}$ showed double peak and the protons of group N=CH in pyrazolo[3,4-d]pyrimidines showed single peaks. Another evidence for the difference of the methanimidamine $\mathbf{H_a}'$ and pyrazolo[3,4-d]pyrimidine $\mathbf{H_a}$ is the C=N stretching absorption band near 2200 cm⁻¹(s).

4. X-ray Crystallography Study of Compound II_I

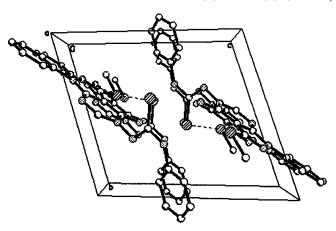

In order to comfirm the structure further more, the 4-imino-pyrazolo[3,4-d]pyrimidine products $\mathbf{H_a}$, $\mathbf{H_I}$ were characterized by x-ray diffraction. The perspective view of compound $\mathbf{H_i}$ is showed in

FIGURE 1 Perspective view of the compound $\mathbf{H_i}$ and the atomic labelling scheme.

Figure 1 and packing diagram of this compound in a unit cell is shown in Figure 2. Selected bond distances and angles with their estimated standard deviations are listed in Table I.

In this compounds, the C(11)=N(4) bond distance is 1.312 Å, slightly shorter the normal C=N bond distance (1.33 Å). The plane defined by C(8), C(9), C(10), N(3), N(4), N(5), C(11), N(6), C(12), N(6), and S(2) atoms is coplanar within the average deviation of 0.0404 Å to form a fully delocalized system. The six-member ring of C(8), C(9), N(3), C(10), N(5), and C(11) atoms formed a π_6^7 configuration in which the N(3) atom is sp² hydrobrid which results in the formation of the trigonal configurations of the N(3) nitrogen. The sum of the C(8)-N(3)-C(11), C(8)-N(3)-N(2) and C(11)-N(4)-N(2) bond angles is 359.8°. In the unit cell, there is a weak action between S(2) and S(1) (-x+1, -y+1,

FIGURE 2 Packing diagram of the compound **II**_i.

TABLE I Selected Bond Lengths [Å] and Angles [°]
for Compound II:	

C(1)-N(1)	1.414(4)	N(6)-C(9)	1.355(4)
N(1)-C(7)	1.356(4)	N(6)-N(7)	1.387(3)
S(1)-C(7)	1.716(3)	N(6)-C(14)	1.426(4)
N(2)-C(7)	1.327(4)	N(7)-C(12)	1.311(4)
N(2)-N(3)	1.407(3)	C(8)-N(5)	1.288(4)
S(2)-C(12)	1.736(3)	N(5)-C(9)	1.353(4)
S(2)-C(13)	1.789(3)	C(9)-C(10)	1.384(4)
N(3)-C(8)	1.366(4)	C(10)-C(11)	1.400(4)
N(3)-C(11)	1.368(4)	C(10)-C(12)	1.426(4)
N(4)-C(11)	1.312(4)		
C(2)- $C(1)$ - $N(1)$	124.9(3)	C(8)-N(5)-C(9)	114.1(3)
C(6)-C(1)-N(1)	116.5(3)	N(5)-C(9)-N(6)	127.4(3)
C(7)-N(1)-C(1)	131.4(3)	N(5)- $C(9)$ - $C(10)$	124.9(3)
C(7)-N(2)-N(3)	112.1(3)	N(6)-C(9)-C(10)	107.7(3)
C(12)- $S(2)$ - $C(13)$	99.96(16)	C(9)-C(10)-C(11)	119.0(3)
C(8)-N(3)-C(11)	121.8(3)	C(9)-C(10)-C(12)	105.0(3)
C(8)-N(3)-N(2)	119.3(3)	C(11)- $C(10)$ - $C(12)$	135.9(3)
C(11)-N(3)-N(2)	118.7(3)	N(4)- $C(11)$ - $N(3)$	118.2(3)
C(9)-N(6)-N(7)	110.0(2)	N(4)-C(11)-C(10)	127.4(3)
C(9)-N(6)-C(14)	131.0(3)	N(3)-C(11)-C(10)	114.4(3)
N(7)-N(6)-C(14)	119.0(2)	N(7)- $C(12)$ - $C(10)$	110.5(3)
C(12)-N(7)-N(6)	106.8(2)	N(7)- $C(12)$ - $S(2)$	124.6(2)
N(2)- $C(7)$ - $N(1)$	115.9(3)	C(10)- $C(12)$ - $S(2)$	124.9(2)
N(2)- $C(7)$ - $S(1)$	126.9(2)	C(19)-C(14)-N(6)	121.8(3)
N(1)- $C(7)$ - $S(1)$	117.2(2)	C(15)-C(14)-N(6)	118.7(3)
N(5)-C(8)-N(3)	125.7(3)		

-z+1), the distance is 3.436 Å. And weak hydrogen bond N(1)—H(1A)···S(1) (-x+1, -y+1, -z+1), N(4)—H(4C)···S(1) (-x+1, -y+1, -z+1) exist, the distances are 3.575 Å and 3.332 Å respectively.

5. Biological Activities of Products

The results of bioassay showed that some of the products have good fungicidal activities. Table II was listed fungical activities of some products.

EXPERIMENTAL

All melting points were deterimined on Yanco melting point apparatus and are uncorrected. Element analysis was carried out on an MF-3 automatic analyzer. The 1H NMR spectra were recorded in CDCl₃ and (CD₃)₂SO resolutions on FX-90Q and AC-P200 spectrometer, and chemical shifts were expressed in δ units using TMS as internal reference.

Compds.	P. zeae a	A. solani ^a	R. solani a	$Palo^b$
IIa	23.5	50.0	30.0	/
$II_{\mathbf{a}}'$	44.7	58.3	68.9	90.5
II_c	64.3	31.6	38.5	/
II_d	29.4	62.5	25.0	/
ΙΙg	22.6	/	/	/

TABLE II Inhibition Rates of Some Products (%)

General Procedure for the Preparation of Compounds $Il_{a,c,h,d\sim g,l}^{6}$

To a solution of ethyl N-[1-Phenyl-4-cyano)pyrazol-5-yl]formimidate (0.96 g, 4 mmol) in anhydrous acetonitrile (15 ml) was added phenylth-iosemicarbazide(0.67 g, 4 mmol) at room temperature. When compounds \mathbf{I} disappeared tracing by TLC, the mixture was evaporated. The residue was purified by silica gel column to give the title compound (\mathbf{II}_i).

General Procedure for the Preparation of Compounds II_{b,j}

To a solution of 2-nitroiminoimidazolidine (0.52 g, 4 mmol) in anhydrous acetonitrile (15 ml), 80% sodium hydride (0.18 g, 6 mmol) was added. After stirring one-half hour, a solution of ethyl N-[1-Phenyl4-cyano)pyrazol-5-yl]formimidate (0.96 g, 4 mmol) in anhydrous acetonitrile (10 ml) was added. When compounds I disappeared tracing

TABLE III Physical Data and Elemental Analysis of Compounds II

			Elementary analysis: found (calcd.)			
Compd.	Yield (%)	m.p. ($^{\circ}$ C)	С	Н	N	
IIa	61.5	92–94	60.83(60.58)	4.86(5.08)	23.27(23.55)	
$II_{\mathbf{a}}'$	28.9	92 – 94	60.38(60.58)	5.00(5.08)	23.41(23.55)	
II_b	66.4	218-220	60.67(60.62)	4.15(4.28)	22.26(22.32)	
II_c	89.8	180-181	55.89(56.01)	4.13(4.31)	27.00(27.22)	
II_d	74.4	140-142	60.60(60.62)	4.08(4.28)	22.34(22.32)	
II_e	54.8	186-187	59.11(59.10)	4.21(4.46)	20.39(20.68)	
II_f	45.9	148 - 150	59.36(59.10)	4.40(4.46)	20.57(20.68)	
$II_{\mathbf{g}}$	58.4	221-223	51.25(51.25)	3.15(3.17)	18.77(18.87)	
II_h	57.3	258-260	57.77(57.76)	4.25(4.47)	25.63(25.91)	
III	56.5	136 - 137	55.96(56.00)	4.22(4.20)	23.78(24.00)	
IIj	89.3	246–248	48.65(48.64)	4.14(3.81)	29.91(30.25)	

^aIn vitro at the concentration of 50 μ g/ml.

^bIn vivo at the concentration of 500 μ g/ml.

TABLE IV ¹H NMR Data of Compounds II

Compd.	$^{1}\mathrm{H}\ \mathrm{NMR}\ (\mathrm{CDCl_{3}}),\delta$
IIa	2.72(s, 3H, CH ₃ S), $4.66\sim4.74$ (m, 2H, N—CH ₂), $5.18\sim5.40$ (m, 2H, CH ₂ =), $5.88\sim6.30$ (m, 1H, CH=), $7.30\sim7.58$, $7.96\sim8.08$ (m, 5H, Ph-H), 7.78 (s, 1H, Pyrimidine-H)
$II_{\mathbf{a}}'$	$\begin{array}{l} 2.56(s,3H,CH_3S),3.94{\sim}4.08~(m,2H,-NCH_2),4.72(bs,NH),5.12{\sim}5.36\\ (m,2H,C=\!$
II_b	$2.76(s, 3H, CH_3S), 7.02 \sim 7.51(m, 9H, Ph-H), 8.06 \sim 8.11(d, 2H, N=CH), 8.46(s, 1H, NH=)$
$\mathbf{II_c}$	2.74(s, 3H, CH ₃ —S), 6.04~6.30(broad-s, 2H, N—H), 7.32~7.68, 8.12~8.34 (m, 5H, Ph-H), 8.46(s, 1H, Pyrimidine-H)
II_d	$δ2.60(s, 3H, CH_3S), δ7.28\sim8.00(m, 10H, Ph-H), δ8.52(s, 1H, CH=N), δ10.60(broad-s, N-H)$
II_e	δ 2.54(s, 3H, CH ₃ S), δ 3.68(s, 3H, CH ₃ O), δ 7.04 \sim 7.92(m, 9H, Ph-H), δ 8.54(s, 1H, CH=N), δ 10.58(broad-s, N=H)
$\mathbf{II_f}$	$\delta 2.58(s, 3H, CH_3S), \delta 3.84(s, 3H, CH_3O), \delta 7.00 \sim 7.40, 7.80 \sim 8.00(m, 9H, Ph-H), \delta 8.48(s, 1H, CH=N), \delta 10.56(broad-s, N-H)$
II_g	δ 2.78(s, 3H, CH ₃ S), δ 7.50~8.20(m, 8H, Ph-H), δ 8.60(s, 1H, CH=N), δ 9.90(broad-s, N=H)
II _h	$2.56(s, 3H, CH_3-S), 2.68(s, 3H, CH_3-S), 3.64 \sim 88(m, 2H, CH_2-N), 4.16 \sim 4.32(m, 2H, CH_2-N), 7.30 \sim 8.10(m, 12H, Ph-H, Pyrimidine-H)$
II_i	$2.62(s, 3H, CH_3-S), 7.30\sim7.72(m, 11H, Ph-H, Pyrimidine-H)$
IIj	$ \begin{array}{l} \delta 2.56(s,3H,CH_3S), \delta 3.66 \sim & 3.84(m,4H,-CH_2CH_2-), \delta 7.32 \sim & 7.82(m,5H,Ph-H), \delta 8.72(s,1H,N=CH) \end{array} $

by TLC, the mixture was filtered. The solid was recrystallized from dimethylformide to give compound $\mathbf{H_{j}}$.

Physical data and elemental analysis of compounds ${\bf II}$ are listed in Table III. Tables IV and V are $^1{\rm H}$ NMR date and IR data of compounds ${\bf II}$ respectively.

TABLE V IR Data of Compounds II

	IR, ν/cm^{-1}					
Compd.	ν _N Η	νc≡n		ν _{C=0}		
IIa	3296.0	/	1634.8	1592.6	1501.3	/
${\bf II_a}'$	3398.5	2200.0	1614.9	1500.0	1466.7	/
II_b	3380.5	/	1643.6	1591.5	1510.0	/
II_c	3437.5	/	1655.9	1587.8	1501.3	/
II_d	3197.0	2214.0	1592.7	1502.3	1468.6	1659.0
II_e	3268.5	2203.5	1612.6	1499.3	1479.6	1660.6
II_f	3243.0	2211.5	1592.7	1500.9	1450.7	1653.2
$\Pi_{\mathbf{g}}$	3207.0	/	1607.6	1497.8	1451.6	1657.4
IIh	3402.0	/	1643.9	1594.4	1502.3	/
II_i	3420.5	/	1647.3	1590.5	1497.6	/
$\Pi_{\mathbf{j}}$	3364.5	2214.5	1619.6	1592.4	1497.0	/

REFERENCES

- H. Geissbuhler, K. Kossmann, I. Baunok, et al., J. Argric. Food Chem., 19, 365 (1971).
- [2] A.-G. Schering, Ger. Offen. Pat., 1. 172,081; CA61:11274d.
- [3] C. Tang, Y. Li, B. Chen, et al., Pesticide Chemistry (Nankai, University Publisher, 1998), p. 211.
- [4] W.-Q. Chen, L.-H. Weng, and G.-Y. Jin, Acta. Cryst., E57(1), 1 (2001).
- [5] Brighton Crop Protection Conference, Pests and Diseases I, p. 29 (1992).
- [6] W.-Q. Chen, J. Ren, F. Yu, et al., Chinese Journal of Pesticide Science (in chinese) 2(2), 15 (2000).
- [7] R. S. Hosmane, B. B. Lim, and F. N. Burntt, J. Org. Chem., 53, 382 (1988).
- [8] R. S. Hosmane, B. B. Lim, and M. F. Summers, J. Org. Chem., 53, 5309 (1988).
- [9] W. Chen, L. Weng, and G. Jin, J. Chem. Crystallogr., 29(12), 1291 (1999).
- [10] Y. Sasada, Molecular and Crystal Structures in Chemistry Handbook (The Chemical Society of Japan, Maruzen, Tokyo, 1984), 3rd ed.